Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
2.
Genes (Basel) ; 14(12)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38136973

RESUMO

A mutant, Δsll1252ins, was generated to functionally characterize Sll1252. Δsll1252ins exhibited a slow-growth phenotype at 70 µmol photons m-2 s-1 and glucose sensitivity. In Δsll1252ins, the rate of PSII activity was not affected, whereas the whole chain electron transport activity was reduced by 45%. The inactivation of sll1252 led to the upregulation of genes, which were earlier reported to be induced in DBMIB-treated wild-type, suggesting that Sll1252 may be involved in electron transfer from the reduced-PQ pool to Cyt b6/f. The inhibitory effect of DCMU on PSII activity was similar in both wild-type and Δsll1252ins. However, the concentration of DBMIB for 50% inhibition of whole chain electron transport activity was 140 nM for Δsll1252ins and 300 nM for wild-type, confirming the site of action of Sll1252. Moreover, the elevated level of the reduced-PQ pool in Δsll1252ins supports that Sll1252 functions between the PQ pool and Cyt b6/f. Interestingly, we noticed that Δsll1252ins reverted to wild-type phenotype by insertion of natural transposon, ISY523, at the disruption site. Δsll1252-Ntrn, expressing only the C-terminal region of Sll1252, exhibited a slow-growth phenotype and disorganized thylakoid structure compared to wild-type and Δsll1252-Ctrn (expressing only the N-terminal region). Collectively, our data suggest that Sll1252 regulates electron transfer between the PQ pool and the Cyt b6/f complex in the linear photosynthetic electron transport chain via coordinated function of both the N- and C-terminal regions of Sll1252.


Assuntos
Citocromos b , Synechocystis , Transporte de Elétrons/genética , Synechocystis/genética , Synechocystis/metabolismo , Oxirredução , Complexo Citocromos b6f/genética , Complexo Citocromos b6f/metabolismo , Plastoquinona/química
3.
Plant Physiol ; 192(4): 2803-2821, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37144829

RESUMO

Plants have evolved multiple mechanisms to cope with diverse types of light stress, particularly the regulation of the electron transport chain (ETC). Under high light (HL) conditions, the balance of electron flux in the ETC is disturbed, which leads to the overaccumulation of reactive oxygen species (ROS) and results in photodamage and photoinhibition. The cytochrome (Cyt) b6/f complex, which coordinates electron transfer between photosystems I and II (PSI and PSII), plays an essential role in regulating the ETC and initiating photoprotection. However, how the Cyt b6/f complex is maintained under HL conditions remains unclear. Here, we report that the activity of the Cyt b6/f complex is sustained by thylakoid-localized cyclophilin 37 (CYP37) in Arabidopsis (Arabidopsis thaliana). Compared with wild-type plants, cyp37 mutants displayed an imbalance in electron transport from Cyt b6/f to PSI under HL stress, which led to increased ROS accumulation, decreased anthocyanin biosynthesis, and increased chlorophyll degradation. Surprisingly, CYP37's role in regulating ETC balance was independent of photosynthesis control, which was indicated by a higher Y (ND), an indicator of P700 oxidation in PSI. Furthermore, the interaction between CYP37 and photosynthetic electron transfer A (PetA), a subunit of the Cyt b6/f complex, suggests that the central function of CYP37 is to maintain Cyt b6/f complex activity rather than to serve as an assembly factor. Our study provides insights into how plants balance electron flow between PSII and PSI via Cyt b6/f complex under HL.


Assuntos
Arabidopsis , Transporte de Elétrons/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Ciclofilinas/genética , Ciclofilinas/metabolismo , Citocromos b6/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Clorofila/metabolismo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Complexo Citocromos b6f/genética , Complexo Citocromos b6f/metabolismo , Plantas/metabolismo
4.
Biomolecules ; 13(3)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36979472

RESUMO

The unicellular green alga, Chlamydomonas reinhardtii, has been widely used as a model system to study photosynthesis. Its possibility to generate and analyze specific mutants has made it an excellent tool for mechanistic and biogenesis studies. Using negative selection of ultraviolet (UV) irradiation-mutated cells, we isolated a mutant (TSP9) with a single amino acid mutation in the Rieske protein of the cytochrome b6f complex. The W143R mutation in the petC gene resulted in total loss of cytochrome b6f complex function at the non-permissive temperature of 37 °C and recovery at the permissive temperature of 25 °C. We then isolated photosystem I (PSI) and photosystem II (PSII) supercomplexes from cells grown at the non-permissive temperature and determined the PSI structure with high-resolution cryogenic electron microscopy. There were several structural alterations compared with the structures obtained from wild-type cells. Our structural data suggest that the mutant responded by excluding the Lhca2, Lhca9, PsaL, and PsaH subunits. This structural alteration prevents state two transition, where LHCII migrates from PSII to bind to the PSI complex. We propose this as a possible response mechanism triggered by the TSP9 phenotype at the non-permissive temperature.


Assuntos
Chlamydomonas reinhardtii , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Complexo Citocromos b6f/genética , Complexo Citocromos b6f/metabolismo , Temperatura , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo
5.
Plant Commun ; 4(1): 100509, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36560880

RESUMO

The cytochrome b6f (Cyt b6f) complex is a multisubunit protein complex in chloroplast thylakoid membranes required for photosynthetic electron transport. Here we report the isolation and characterization of the new tiny albino 1 (nta1) mutant in Arabidopsis, which has severe defects in Cyt b6f accumulation and chloroplast development. Gene cloning revealed that the nta1 phenotype was caused by disruption of a single nuclear gene, NTA1, which encodes an integral thylakoid membrane protein conserved across green algae and plants. Overexpression of NTA1 completely rescued the nta1 phenotype, and knockout of NTA1 in wild-type plants recapitulated the mutant phenotype. Loss of NTA1 function severely impaired the accumulation of multiprotein complexes related to photosynthesis in thylakoid membranes, particularly the components of Cyt b6f. NTA1 was shown to directly interact with four subunits (Cyt b6/PetB, PetD, PetG, and PetN) of Cyt b6f through the DUF1279 domain and C-terminal sequence to mediate their assembly. Taken together, our results identify NTA1 as a new and key regulator of chloroplast development that plays essential roles in assembly of the Cyt b6f complex by interacting with multiple Cyt b6f subunits.


Assuntos
Arabidopsis , Complexo Citocromos b6f , Arabidopsis/genética , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Complexo Citocromos b6f/genética , Complexo Citocromos b6f/metabolismo , Citocromos b/metabolismo , Proteínas de Membrana/metabolismo , Plantas/metabolismo , Tilacoides/metabolismo , Proteínas de Arabidopsis/metabolismo
6.
Plant Physiol ; 191(3): 1803-1817, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36516417

RESUMO

Linear photosynthetic electron flow (LEF) produces NADPH and generates a proton electrochemical potential gradient across the thylakoid membrane to synthesize ATP, both of which are required for CO2 fixation. As cellular demand for ATP and NADPH varies, cyclic electron flow (CEF) between Photosystem I and the cytochrome b6f complex (b6f) produces extra ATP. b6f regulates LEF and CEF via photosynthetic control, which is a pH-dependent b6f slowdown of plastoquinol oxidation at the lumenal site. This protection mechanism is triggered at more alkaline lumen pH in the pgr1 (proton gradient regulation 1) mutant of the vascular plant Arabidopsis (Arabidopsis thaliana), which contains a Pro194Leu substitution in the b6f Rieske Iron-sulfur protein Photosynthetic Electron Transfer C (PETC) subunit. In this work, we introduced the equivalent pgr1 mutation in the green alga Chlamydomonas reinhardtii to generate PETC-P171L. Consistent with the pgr1 phenotype, PETC-P171L displayed impaired NPQ induction along with slower photoautotrophic growth under high light conditions. Our data provide evidence that the ΔpH component in PETC-P171L depends on oxygen availability. Only under low oxygen conditions was the ΔpH component sufficient to trigger a phenotype in algal PETC-P171L where the mutant b6f was more restricted to oxidize the plastoquinol pool and showed diminished electron flow through the b6f complex. These results demonstrate that photosynthetic control of different stringency are established in C. reinhardtii depending on the cellular metabolism, and the lumen pH-sensitive PETC-P171L was generated to read out various associated effects.


Assuntos
Arabidopsis , Complexo Citocromos b6f , Complexo Citocromos b6f/genética , Complexo Citocromos b6f/metabolismo , Prótons , Elétrons , NADP/metabolismo , Transporte de Elétrons/fisiologia , Fotossíntese/genética , Oxirredução , Arabidopsis/genética , Arabidopsis/metabolismo , Trifosfato de Adenosina/metabolismo , Oxigênio/metabolismo
7.
Physiol Plant ; 174(6): e13803, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36259085

RESUMO

Photosynthesis is fundamental for plant growth and yield. The cytochrome b6 f complex catalyses a rate-limiting step in thylakoid electron transport and therefore represents an important point of regulation of photosynthesis. Here we show that overexpression of a single core subunit of cytochrome b6 f, the Rieske FeS protein, led to up to a 40% increase in the abundance of the complex in Nicotiana tabacum (tobacco) and was accompanied by an enhanced in vitro cytochrome f activity, indicating a full functionality of the complex. Analysis of transgenic plants overexpressing Rieske FeS by the light-induced fluorescence transients technique revealed a more oxidised primary quinone acceptor of photosystem II (QA ) and plastoquinone pool and faster electron transport from the plastoquinone pool to photosystem I upon changes in irradiance, compared to control plants. A faster establishment of qE , the energy-dependent component of nonphotochemical quenching, in transgenic plants suggests a more rapid buildup of the transmembrane proton gradient, also supporting the increased in vivo cytochrome b6 f activity. However, there was no consistent increase in steady-state rates of electron transport or CO2 assimilation in plants overexpressing Rieske FeS grown in either laboratory conditions or field trials, suggesting that the in vivo activity of the complex was only transiently increased upon changes in irradiance. Our results show that overexpression of Rieske FeS in tobacco enhances the abundance of functional cytochrome b6 f and may have the potential to increase plant productivity if combined with other traits.


Assuntos
Citocromos b , /genética , Citocromos b/metabolismo , Plastoquinona , Fotossíntese/fisiologia , Transporte de Elétrons/fisiologia , Complexo Citocromos b6f/genética , Complexo Citocromos b6f/metabolismo , Plantas Geneticamente Modificadas/metabolismo
8.
Nat Commun ; 13(1): 4045, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831297

RESUMO

The conversion of light energy to chemical energy by photosynthesis requires the concerted action of large protein complexes in the thylakoid membrane. Recent work has provided fundamental insights into the three-dimensional structure of these complexes, but how they are assembled from hundreds of parts remains poorly understood. Particularly little is known about the biogenesis of the cytochrome b6f complex (Cytb6f), the redox-coupling complex that interconnects the two photosystems. Here we report the identification of a factor that guides the assembly of Cytb6f in thylakoids of chloroplasts. The protein, DE-ETIOLATION-INDUCED PROTEIN 1 (DEIP1), resides in the thylakoid membrane and is essential for photoautotrophic growth. Knock-out mutants show a specific loss of Cytb6f, and are defective in complex assembly. We demonstrate that DEIP1 interacts with the two cytochrome subunits of the complex, PetA and PetB, and mediates the assembly of intermediates in Cytb6f biogenesis. The identification of DEIP1 provides an entry point into the study of the assembly pathway of a crucial complex in photosynthetic electron transfer.


Assuntos
Arabidopsis , Complexo Citocromos b6f , Arabidopsis/genética , Arabidopsis/metabolismo , Complexo Citocromos b6f/genética , Complexo Citocromos b6f/metabolismo , Citocromos b/metabolismo , Estiolamento , Fotossíntese , Tilacoides/metabolismo
9.
Plant Cell Physiol ; 62(10): 1603-1614, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34283246

RESUMO

The cytochrome b6f (cyt b6f) acts as a common linker of electron transport between photosystems I and II in oxygenic photosynthesis. PetM, one of eight subunits of the cyt b6f complex, is a small hydrophobic subunit at the outside periphery, the functional mechanism of which remains to be elucidated in higher plants. In this work, we found that unlike the PetM mutant in Synechocystis sp. PCC 6803, the Arabidopsis thaliana PetM mutant showed a bleached phenotype with yellowish leaves, block of photosynthetic electron transport and loss of photo-autotrophy, similar to the Arabidopsis PetC mutant. Although PetM is relatively conserved between higher plants and cyanobacteria, Synechocystis PetM could not rescue the PetM-knockout phenotype in Arabidopsis. We provide evidence that the Synechocystis PetM did not stably bind to the Arabidopsis cyt b6f complex. Based on these results, we suggest that PetM is required by Arabidopsis to maintain the function of the cyt b6f complex, likely through its close link with core subunits to form a tight 'fence' that stabilizes the core of the complex.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Complexo Citocromos b6f/genética , Mutação , Fotossíntese , Folhas de Planta/genética , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Cor , Complexo Citocromos b6f/química , Complexo Citocromos b6f/metabolismo , Transporte de Elétrons , Fenótipo , Alinhamento de Sequência
10.
Plant Cell ; 33(8): 2583-2601, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34048579

RESUMO

Genetic incompatibility between the cytoplasm and the nucleus is thought to be a major factor in species formation, but mechanistic understanding of this process is poor. In evening primroses (Oenothera spp.), a model plant for organelle genetics and population biology, hybrid offspring regularly display chloroplast-nuclear incompatibility. This usually manifests in bleached plants, more rarely in hybrid sterility or embryonic lethality. Hence, most of these incompatibilities affect photosynthetic capability, a trait that is under selection in changing environments. Here we show that light-dependent misregulation of the plastid psbB operon, which encodes core subunits of photosystem II and the cytochrome b6f complex, can lead to hybrid incompatibility, and this ultimately drives speciation. This misregulation causes an impaired light acclimation response in incompatible plants. Moreover, as a result of their different chloroplast genotypes, the parental lines differ in photosynthesis performance upon exposure to different light conditions. Significantly, the incompatible chloroplast genome is naturally found in xeric habitats with high light intensities, whereas the compatible one is limited to mesic habitats. Consequently, our data raise the possibility that the hybridization barrier evolved as a result of adaptation to specific climatic conditions.


Assuntos
Especiação Genética , Genoma de Cloroplastos , Oenothera biennis/genética , Óperon , Fotossíntese/genética , Aclimatação/genética , Complexo Citocromos b6f/genética , Luz , Oenothera biennis/fisiologia , Complexo de Proteína do Fotossistema II/genética , Proteínas de Plantas/genética , Plastídeos/genética , Regiões Promotoras Genéticas , Edição de RNA
11.
Biochim Biophys Acta Gen Subj ; 1864(1): 129462, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669584

RESUMO

BACKGROUND: Bacteria routinely utilize two-component signal transduction pathways to sense and alter gene expression in response to environmental cues. While cyanobacteria express numerous two-component systems, these pathways do not regulate all of the genes within many of the identified abiotic stress-induced regulons. METHODS: Electron transport inhibitors combined with western analysis and measurement of chlorophyll a fluorescent yield, using pulse amplitude modulation fluorometry, were used to detect the effect of a diverse range of abiotic stresses on the redox status of the photosynthetic electron transport chain and the accumulation and degradation of the Synechocystis sp. PCC 6803 DEAD box RNA helicase, CrhR. RESULTS: Alterations in CrhR abundance were tightly correlated with the redox poise of the electron transport chain between QA and cytochrome b6f, with reduction favoring CrhR accumulation. CONCLUSIONS: The results provide evidence for an alternative, convergent sensing mechanism mediated through the redox poise of QB/PQH2 that senses multiple, divergent forms of abiotic stress and regulates accumulation of CrhR. The RNA helicase activity of CrhR could then function as a post-translational effector to regulate downstream gene expression. GENERAL SIGNIFICANCE: The potential for a related system in Staphylococcus aureus and higher plant chloroplasts suggest convergent sensing mechanisms may be evolutionarily conserved and occur more widely than anticipated.


Assuntos
Cianobactérias/genética , Complexo Citocromos b6f/genética , RNA Helicases DEAD-box/genética , Estresse Fisiológico/genética , Clorofila A/biossíntese , Complexo Citocromos b6f/química , RNA Helicases DEAD-box/química , Transporte de Elétrons/genética , Regulação Bacteriana da Expressão Gênica/genética , Oxirredução , Fotossíntese/genética , Processamento Pós-Transcricional do RNA/genética , Transdução de Sinais/genética
12.
Commun Biol ; 2: 314, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31453378

RESUMO

C4 photosynthesis is characterised by a CO2 concentrating mechanism that operates between mesophyll and bundle sheath cells increasing CO2 partial pressure at the site of Rubisco and photosynthetic efficiency. Electron transport chains in both cell types supply ATP and NADPH for C4 photosynthesis. Cytochrome b6f is a key control point of electron transport in C3 plants. To study whether C4 photosynthesis is limited by electron transport we constitutively overexpressed the Rieske FeS subunit in Setaria viridis. This resulted in a higher Cytochrome b6f content in mesophyll and bundle sheath cells without marked changes in the abundances of other photosynthetic proteins. Rieske overexpression plants showed better light conversion efficiency in both Photosystems and could generate higher proton-motive force across the thylakoid membrane underpinning an increase in CO2 assimilation rate at ambient and saturating CO2 and high light. Our results demonstrate that removing electron transport limitations can increase C4 photosynthesis.


Assuntos
Complexo Citocromos b6f/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Fotossíntese , Setaria (Planta)/fisiologia , Dióxido de Carbono/metabolismo , Complexo Citocromos b6f/genética , Complexo III da Cadeia de Transporte de Elétrons/genética , Fluorescência , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Fotossíntese/efeitos da radiação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Força Próton-Motriz/efeitos da radiação , Setaria (Planta)/genética , Setaria (Planta)/efeitos da radiação
13.
FEBS Lett ; 593(16): 2103-2111, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31198994

RESUMO

The 2.5 Å structure of the cytochrome (cyt) b6 f complex provides a basis for control of the rate-limiting electron transfer step of oxygenic photosynthesis associated with the plastoquinol/quinone exchange pathway. Here, a structural change was made at a site containing two proline residues which border the intra-cyt pathway for plastoquinol/quinone exchange. The proline side chains confer a larger aperture for passage of plastoquinol/quinone. Change of these prolines to alanine in the cyanobacterium Synechococcus sp. PCC 7002 results in attenuation of this rate-limiting step, observed by a two-fold reduction in the rate of cell growth, O2 evolution, and plastoquinol-mediated reduction of cyt f. This study demonstrates modification by site-directed mutagenesis of photosynthetic energy transduction based on rational application of information in the atomic structure.


Assuntos
Substituição de Aminoácidos , Complexo Citocromos b6f/química , Complexo Citocromos b6f/genética , Synechococcus/metabolismo , Alanina/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Complexo Citocromos b6f/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oxigênio/metabolismo , Fotossíntese/efeitos dos fármacos , Plastoquinona/análogos & derivados , Plastoquinona/farmacologia , Prolina/genética , Conformação Proteica/efeitos dos fármacos
14.
Commun Biol ; 2: 159, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31069268

RESUMO

In the last common enzymatic step of tetrapyrrole biosynthesis, prior to the branching point leading to the biosynthesis of heme and chlorophyll, protoporphyrinogen IX (Protogen) is oxidised to protoporphyrin IX (Proto) by protoporphyrinogen IX oxidase (PPX). The absence of thylakoid-localised plastid terminal oxidase 2 (PTOX2) and cytochrome b6f complex in the ptox2 petB mutant, results in almost complete reduction of the plastoquinone pool (PQ pool) in light. Here we show that the lack of oxidised PQ impairs PPX function, leading to accumulation and subsequently uncontrolled oxidation of Protogen to non-metabolised Proto. Addition of 3(3,4-Dichlorophenyl)-1,1-dimethylurea (DCMU) prevents the over-reduction of the PQ pool in ptox2 petB and decreases Proto accumulation. This observation strongly indicates the need of oxidised PQ as the electron acceptor for the PPX reaction in Chlamydomonas reinhardtii. The PPX-PQ pool interaction is proposed to function as a feedback loop between photosynthetic electron transport and chlorophyll biosynthesis.


Assuntos
Proteínas de Algas/genética , Chlamydomonas reinhardtii/enzimologia , Clorofila/biossíntese , Regulação da Expressão Gênica de Plantas , Plastoquinona/metabolismo , Protoporfirinogênio Oxidase/genética , Proteínas de Algas/metabolismo , Chlamydomonas reinhardtii/efeitos dos fármacos , Chlamydomonas reinhardtii/genética , Complexo Citocromos b6f/genética , Complexo Citocromos b6f/metabolismo , Diurona/farmacologia , Transporte de Elétrons , Retroalimentação Fisiológica , Herbicidas/farmacologia , Oxirredução , Fotossíntese/efeitos dos fármacos , Fotossíntese/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plastídeos/efeitos dos fármacos , Plastídeos/enzimologia , Plastídeos/genética , Protoporfirinogênio Oxidase/metabolismo , Protoporfirinas/metabolismo
15.
Plant Physiol ; 179(2): 588-600, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30464024

RESUMO

In response to a sudden increase in light intensity, plants must cope with absorbed excess photon energy to protect photosystems from photodamage. Under fluctuating light, PSI is severely photodamaged in the Arabidopsis (Arabidopsis thaliana) proton gradient regulation5 (pgr5) mutant defective in the main pathway of PSI cyclic electron transport (CET). Here, we aimed to determine how PSI is protected by two proposed regulatory roles of CET via transthylakoid ΔpH formation: (1) reservation of electron sink capacity by adjusting the ATP/NADPH production ratio (acceptor-side regulation) and (2) down-regulation of the cytochrome b 6 f complex activity called photosynthetic control for slowing down the electron flow toward PSI (donor-side regulation). We artificially enhanced donor- and acceptor-side regulation in the wild-type and pgr5 backgrounds by introducing the pgr1 mutation conferring the hypersensitivity of the cytochrome b 6 f complex to luminal acidification and moss Physcomitrella patens flavodiiron protein genes, respectively. Enhanced photosynthetic control partially alleviated PSI photodamage in the pgr5 mutant background but restricted linear electron transport under constant high light, suggesting that the strength of photosynthetic control should be optimized. Flavodiiron protein-dependent oxygen photoreduction formed a large electron sink and alleviated PSI photoinhibition, accompanied by the induction of photosynthetic control. Thus, donor-side regulation is essential for PSI photoprotection but acceptor-side regulation also is important to rapidly induce donor-side regulation. In angiosperms, PGR5-dependent CET is required for both functions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Proteínas de Arabidopsis/genética , Bryopsida/genética , Complexo Citocromos b6f/genética , Complexo Citocromos b6f/metabolismo , Transporte de Elétrons , Concentração de Íons de Hidrogênio , Luz , Mutação , Fotossíntese , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteína do Fotossistema I/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Biologia Sintética/métodos
16.
J Biol Chem ; 293(45): 17559-17573, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30228184

RESUMO

The supramolecular organization of membrane proteins (MPs) is sensitive to environmental changes in photosynthetic organisms. Isolation of MP supercomplexes from the green algae Chlamydomonas reinhardtii, which are believed to contribute to cyclic electron flow (CEF) between the cytochrome b6f complex (Cyt-b6f) and photosystem I (PSI), proved difficult. We were unable to isolate a supercomplex containing both Cyt-b6f and PSI because in our hands, most of Cyt-b6f did not comigrate in sucrose density gradients, even upon using chemical cross-linkers or amphipol substitution of detergents. Assisted by independent affinity purification and MS approaches, we utilized disintegrating MP assemblies and demonstrated that the algae-specific CEF effector proteins PETO and ANR1 are bona fide Cyt-b6f interactors, with ANR1 requiring the presence of an additional, presently unknown, protein. We narrowed down the Cyt-b6f interface, where PETO is loosely attached to cytochrome f and to a stromal region of subunit IV, which also contains phosphorylation sites for the STT7 kinase.


Assuntos
Chlamydomonas reinhardtii/enzimologia , Complexo Citocromos b6f/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Chlamydomonas reinhardtii/genética , Complexo Citocromos b6f/genética , Complexo de Proteína do Fotossistema I/genética
17.
Plant Physiol ; 177(2): 465-475, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29703866

RESUMO

Site-directed mutagenesis of chloroplast genes was developed three decades ago and has greatly advanced the field of photosynthesis research. Here, we describe a new approach for generating random chloroplast gene mutants that combines error-prone polymerase chain reaction of a gene of interest with chloroplast complementation of the knockout Chlamydomonas reinhardtii mutant. As a proof of concept, we targeted a 300-bp sequence of the petD gene that encodes subunit IV of the thylakoid membrane-bound cytochrome b6f complex. By sequencing chloroplast transformants, we revealed 149 mutations in the 300-bp target petD sequence that resulted in 92 amino acid substitutions in the 100-residue target subunit IV sequence. Our results show that this method is suited to the study of highly hydrophobic, multisubunit, and chloroplast-encoded proteins containing cofactors such as hemes, iron-sulfur clusters, and chlorophyll pigments. Moreover, we show that mutant screening and sequencing can be used to study photosynthetic mechanisms or to probe the mutational robustness of chloroplast-encoded proteins, and we propose that this method is a valuable tool for the directed evolution of enzymes in the chloroplast.


Assuntos
Chlamydomonas reinhardtii/genética , Proteínas de Cloroplastos/química , Proteínas de Cloroplastos/genética , Mutagênese , Reação em Cadeia da Polimerase/métodos , Biolística/métodos , Proteínas de Cloroplastos/metabolismo , Complexo Citocromos b6f/química , Complexo Citocromos b6f/genética , Complexo Citocromos b6f/metabolismo , Técnicas de Inativação de Genes , Biblioteca Gênica , Teste de Complementação Genética , Interações Hidrofóbicas e Hidrofílicas , Relação Estrutura-Atividade
18.
Trends Plant Sci ; 22(7): 574-582, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28483636

RESUMO

It is well established that the majority of energy-converting photosynthetic protein complexes in plant thylakoid membrane are nonhomogenously distributed between stacked and unstacked membrane regions. Yet, the sublocalization of the central cytochrome b6f complex remains controversial. We present a structural model that explains the variation in cytochrome b6f sublocalization data. Small changes in the distance between adjacent membranes in stacked grana regions either allow or restrict access of cytochrome b6f complexes to grana. If the width of the gap falls below a certain threshold, then the steric hindrance prevents cytochrome b6f access to grana. Evidence is presented that the width of stromal gap is variable, demonstrating that the postulated mechanism can regulate the lateral distribution of the cytochrome b6f complexes.


Assuntos
Complexo Citocromos b6f/metabolismo , Fotossíntese/fisiologia , Proteínas de Plantas/metabolismo , Complexo Citocromos b6f/genética , Proteínas de Plantas/genética , Tilacoides/genética , Tilacoides/metabolismo
19.
Plant Physiol ; 173(3): 1636-1647, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28153920

RESUMO

The diffusion efficiency of oxygen in the atmosphere, like that of CO2, is approximately 104 times greater than that in aqueous environments. Consequently, terrestrial photosynthetic organisms need mechanisms to protect against potential oxidative damage. The liverwort Marchantia polymorpha, a basal land plant, has habitats where it is exposed to both water and the atmosphere. Furthermore, like cyanobacteria, M. polymorpha has genes encoding flavodiiron proteins (FLV). In cyanobacteria, FLVs mediate oxygen-dependent alternative electron flow (AEF) to suppress the production of reactive oxygen species. Here, we investigated whether FLVs are required for the protection of photosynthesis in M. polymorpha A mutant deficient in the FLV1 isozyme (ΔMpFlv1) sustained photooxidative damage to photosystem I (PSI) following repetitive short-saturation pulses of light. Compared with the wild type (Takaragaike-1), ΔMpFlv1 showed the same photosynthetic oxygen evolution rate but a lower electron transport rate during the induction phase of photosynthesis. Additionally, the reaction center chlorophyll in PSI, P700, was highly reduced in ΔMpFlv1 but not in Takaragaike-1. These results indicate that the gene product of MpFlv1 drives AEF to oxidize PSI, as in cyanobacteria. Furthermore, FLV-mediated AEF supports the production of a proton motive force to possibly induce the nonphotochemical quenching of chlorophyll fluorescence and suppress electron transport in the cytochrome b6/f complex. After submerging the thalli, a decrease in photosystem II operating efficiency was observed, particularly in ΔMpFlv1, which implies that species living in these sorts of habitats require FLV-mediated AEF.


Assuntos
Flavoproteínas/metabolismo , Marchantia/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Proteínas de Plantas/metabolismo , Clorofila/metabolismo , Complexo Citocromos b6f/genética , Complexo Citocromos b6f/metabolismo , Transporte de Elétrons/genética , Flavoproteínas/genética , Regulação da Expressão Gênica de Plantas , Luz , Marchantia/genética , Mutação , Oxigênio/metabolismo , Fotossíntese/genética , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Plantas/genética , Força Próton-Motriz/efeitos da radiação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo
20.
J Biol Chem ; 291(41): 21740-21750, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27539852

RESUMO

Trans-membrane signaling involving a serine/threonine kinase (Stt7 in Chlamydomonas reinhardtii) directs light energy distribution between the two photosystems of oxygenic photosynthesis. Oxidation of plastoquinol mediated by the cytochrome b6f complex on the electrochemically positive side of the thylakoid membrane activates the kinase domain of Stt7 on the trans (negative) side, leading to phosphorylation and redistribution ("state transition") of the light-harvesting chlorophyll proteins between the two photosystems. The molecular description of the Stt7 kinase and its interaction with the cytochrome b6f complex are unknown or unclear. In this study, Stt7 kinase has been cloned, expressed, and purified in a heterologous host. Stt7 kinase is shown to be active in vitro in the presence of reductant and purified as a tetramer, as determined by analytical ultracentrifugation, electron microscopy, and electrospray ionization mass spectrometry, with a molecular weight of 332 kDa, consisting of an 83.41-kDa monomer. Far-UV circular dichroism spectra show Stt7 to be mostly α-helical and document a physical interaction with the b6f complex through increased thermal stability of Stt7 secondary structure. The activity of wild-type Stt7 and its Cys-Ser mutant at positions 68 and 73 in the presence of a reductant suggest that the enzyme does not require a disulfide bridge for its activity as suggested elsewhere. Kinase activation in vivo could result from direct interaction between Stt7 and the b6f complex or long-range reduction of Stt7 by superoxide, known to be generated in the b6f complex by quinol oxidation.


Assuntos
Chlamydomonas reinhardtii/enzimologia , Complexo Citocromos b6f/química , Complexos de Proteínas Captadores de Luz/química , Proteínas Serina-Treonina Quinases/química , Chlamydomonas reinhardtii/genética , Complexo Citocromos b6f/genética , Complexo Citocromos b6f/metabolismo , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Oxirredução , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Quaternária de Proteína , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...